Мы видим, что задачу удалось решить, не выясняя даже, какие силы и в течение какого времени действовали на тела системы; эти сведения были бы нужны, если бы мы вычисляли скорость пушки при помощи второго закона Ньютона. В закон сохранения импульса силы вообще не входят. Это обстоятельство позволяет решать простым способом многие задачи, в основном такие, где мы интересуемся не процессом взаимодействия тел системы, а только окончательным результатом этого взаимодействия, как в примере с выстрелом из пушки. Конечно, если силы неизвестны, то должны быть заданы какие-то другие величины, относящиеся к движению. В данном примере, для того чтобы можно было определить скорость пушки, надо было знать скорость снаряда после выстрела.
Если измерено время взаимодействия пушки со снарядом, то можно найти среднюю силу, действовавшую на снаряд. Если это время равнялось t, то средняя сила была равна Fсредн=mv/t. Такая же по модулю средняя сила (но противоположно направленная) действовала и на пушку.
Рассмотрим еще одну очень важную задачу, которую также можно решить, пользуясь законом сохранения импульса. Это — задача о неупругом соударении двух тел, т. е. о случае, когда тела после соударения движутся с одной и
Рис. 74. Сложение импульсов при неупругом соударении двух тел
той же скоростью, как это происходит, например, при соударении двух комков мягкой глины, которые, столкнувшись, слипаются и продолжают движение совместно.
Пусть тело массы m1 имело до соударения скорость v1, а тело массы m2 имело до соударения скорость v2. Пусть внешние силы отсутствуют. После соударения оба тела бу-
110
дут двигаться вместе с некоторой скоростью v, которую и требуется найти. Суммарный импульс тел легко найти путем векторного сложения, как это показано на рис. 74. Слагаемые векторы — импульсы каждого из тел до соударения. Искомая же скорость получится путем деления суммарного импульса тел на их суммарную массу: далее 


Используются технологии uCoz